Aplicații ale matematicii

Miorita matematica
Pe-un picior de PLAN
EUCLIDIAN
Iata vin in cale
TRANSLATAND la vale,
Trei MULTIMI de PUNCTE
Toate trei DISJUNCTE
De FUNCTII pazite
Toate diferite.
Ele sunt tot trei :
Una-i INJECTIVA,
Alta-i BIJECTIVA,
Si-alta-i SURJECTIVA.
Iar cea INJECTIVA
Si cea SURJECTIVA,
Mari se vorbira
Si se sfatuira
Sa ramana treze
Pana-o sa-nsereze
Si s-o ANULEZE
Pe cea BIJECTIVA,
C-are PRIMITIVA
Si ASIMPTOTE multe
Cate si mai cate,
Ca e INVERSABILA
Si chiar DERIVABILA.
Dar intr-o MULTIME
Asta s-a aflat
Si s-au indignat
C-ale lor cuvinte
Intrec orice LIMITE.
Dar de la f(0)-ncoace
Unui PUNCT nu-i place
Sa mai stea-n MULTIME
Si de treaba a se tine.
BIJECTIVA se-n! treba :
− PUNCTUL asta ce-o avea?
Si se duse
Si ii spuse :
− Draga PUNCTULETUL meu
Ce rau,oare ,iti fac eu,
Sau nu-ti place poate
C-ai COORDONATE
NATURALE toate?
Vrei sa stai mai jos
Crezi ca-i mai frumos ?
Nu vrei un` te-am pus
Vrei cumva mai sus?
− Draga BIJECTIVA
Eu chiar dimpotriva,
Ma simt foarte bine
Dar e rau de tine!
Cand o sa-nsereze,
Vor sa te-ANULEZE
Functia INJECTIVA
Si cea SURJECTIVA.
− Daca s-o-ntampla
De m-or ANULA
Sa ma-ngropi in zori
In CAMP DE VECTORI
Intr-o VECINATATE
Pe-aici pe-aproape
Sau chiar in MULTIME
Sa fiti tot cu mine.
Iar la cap sa-mi pui
CALCUL INTEGRAL
Ori un MANUAL
Sau poate-un TRATAT
Cat mai inspirat
Si de l-or citi
Isi vor aminti
Cei ce au uitat
Ca am existat Si voi fi propusa
In SUBIECTE inclusa
Pentru OLIMPIADA
Sau BALCANIADA.
Si-n loc de ANULAT
Sa le spui curat
C-am INTERSECTAT
Mindrele ELIPSE
Ca am PUNCTE FIXE
RADACINI REALE
Si IMAGINARE
Si ca am DARBOUX.
Dar mai afla tu
Ca de-oi intalni
O SFERA batrana
Cu un CERC de lana
Prin SPATIU alergand
Si la toti zicand :
− Cine mi-a vazut
Sau mi-a cunoscut
O FUNCTIE – AFINA
Cu o PANTA lina
Bine DEFINITA
Si NEMARGINITA ?
Sa te-nduri de ea
Si sa-i spui asa :
C-am INTERSECTAT
Mandrele ELIPSE
Ca am PUNCTE FIXE
Radacini COMPLEXE
Si ca am DARBOUX.
Dar nu-i spune tu
De cele REALE
Ca de-i povesti
Mult ai s-o mahnesti
Si va sti de-ndat
Ca m-au ANULAT.
Si inca te mai rog
Ca-ntre colegi buni
Tot ce am avut
Tu sa le aduni
Sa le scoti din SPATIUL
Cu trei DIMENSIUNI,
Iar tu dragul meu
Sa te INTEGREZI
Sa te ANEXEZI
La alta MULTIME
Ca-i greu fara mine
Dar iti va fi bine
Si vei rezista, cat va EXISTA
MATEMATICA !

Mathematics Paradise

Lucrați singuri tema!

Karl Friedrich Gauß (transcris în mod tradițional Gauss, latinizat Carolo Friderico Gauss; n. 30 aprilie 1777, Braunschweig – d. 23 februarie 1855, Göttingen) a fost un matematician, fizician și astronom german, celebru pentru lucrările despre integralele multiple, magnetism și sistemul de unități care îi poartă numele.

Este considerat unul dintre cei mai mari oameni de știință germani.

Donald în țara matematicii

Să facem cunoștință:
12043180_707715909328275_6167578813468733275_n
Dar ce este matematica?

Cuvântul „matematică” îşi are originea în grecescul „μάθημα” („máthēma”), care înseamnă „învăţare”, „studiu”, „ştiinţă”, dar care ulterior a obţinut şi sensul de „studiu matematic”. Din greacă, termenul a pătruns în latină ca „mathematica” şi apoi în forme asemănătoare în limbile europene. Forma aparentă de plural în engleză „mathematics” s-a creat prin împrumutarea formei singulare greceşti şi concordarea ei cu denumirile deja existente de „physics” şi „metaphysics”. Forma plurală engleză precum şi pluralul franţuzesc „les mathématiques”, au revenit în latină sub forma pluralului neutru „mathematica” (Cicero), iniţiat de „τα μαθηματικά” („ta mathēmatiká”) şi utilizat de Aristotel cu sensul de „toate lucrurile matematice”.

În română, termenul a fost copiat după franţuzescul „mathématique” şi italienescul „matematica”. Se foloseşte şi denumirea la plural – matematici, cu referire la aplicaţiile matematicii (matematici financiare, actuariale etc.).

Matematica și Teatrul?!

Importanța matematicii:

…..Matematica Imposibilă 🙂